Sierpień 2013

Extra! Extra! Read all about it!

It’s that time of year again. With the last days of August upon us and a busy September just around the corner, it’s a good time to stop and take measure of the evolution of the ITER Organization. The 2012 ITER Organization Annual Report, just released, recounts one year in the life of the ITER Project—the highlights in every technical department, the organizational challenges faced (and the solutions set into motion), and milestones in construction and manufacturing. In 2012, the ITER project entered the third year of its Construction Phase. The ground support structure and seismic isolation system for the future Tokamak Complex was completed, work began on the site of the Assembly Building, the ITER site was connected to the French electrical grid, and part of the ITER team—approximately 500 people—moved into the completed Headquarters building. The year 2012 was also witness to the accomplishment of a major licensing milestone when, in November, ITER became the world’s first fusion device to obtain nuclear licensing. The project made a definitive shift in 2012 from design work and process qualification to concrete manufacturing and production. To match this important evolution, the 2012 Annual Report introduces a new feature—the last pages of the report (pp. 40-48) are now reserved for reports from the Domestic Agencies. How is the procurement of ITER systems divided among the Domestic Agencies? Where are activities for ITER taking place in each Member? What percentage of work has been signed over by the ITER Organization in the form of Procurement Arrangements? And, finally: What major manufacturing milestones were accomplished in 2012? The ITER Organization 2012 Annual Report and 2012 Financial Statements are available online at ITER’s Publicat Czytaj dalej...

3,000 sensors for detecting the quench

A robust detection system is under development to protect the ITER magnets in case of quenches—those events in a magnet’s lifetime when superconductivity is lost and the conductors return to a resistive state. When cooled to the temperature of 4.5 Kelvin (around minus 269 degrees Celsius), ITER’s magnets will become powerful superconductors. The electrical current surging through a superconductor encounters no electrical resistance, allowing superconducting magnets to carry the high current and produce the strong magnetic fields that are essential for ITER experiments. Superconductivity can be maintained as long as certain thresholds conditions are respected (cryogenic temperatures, current density, magnetic field). Outside of these boundary conditions a magnet will return to its normal resistive state and the high current will produce high heat and voltage. This transition from superconducting to resistive is referred to as a quench. During a quench, temperature, voltage and mechanical stresses increase—not only on the coil itself, but also in the magnet feeders and the magnet structures. A quench that begins in one part of a superconducting coil can propagate, causing other areas to lose their superconductivity. As this phenomenon builds, it is essential to discharge the huge energy accumulated in the magnet to the exterior of the Tokamak Building. _To_57_Tx_Magnet quenches aren’t expected often during the lifetime of ITER, but it is necessary to plan for them. „Quenches aren’t an accident, failure or defect—they are part of the life of a superconducting magnet and the latter must be designed to withstand them,” says Felix Rodriguez-Mateos, the quench detection responsible engineer in the Magnet Division. „It is our job to equip ITER with a de Czytaj dalej...

US-made drain tanks expected on site in mid-2014

Drain tank fabrication for ITER’s tokamak cooling water system is progressing steadily under the leadership of US ITER, which is managed by Oak Ridge National Laboratory for the US Department of Energy. The drain tanks will be among the first major hardware items shipped to the ITER site in France. The US production timing will accommodate the installation sequence for the ITER fusion facility. Joseph Oat Corporation, a sub-contractor to AREVA Federal Services based in Camden, New Jersey, has begun fabrication activities for four 10-metre-tall, 78 metric ton drain tanks and one 5-metre-tall, 46 metric ton drain tank. Another industry partner, ODOM Industries in Milford, Ohio, is fabricating the ten tank heads as a sub-contractor to the Joseph Oat Corporation. ODOM will ship each tank head as it is fabricated, and will complete delivery to Joseph Oat Corporation by the end of 2013. Joseph Oat, which specializes in industrial fabrication of pressure vessels and heat exchange technologies, expects to stagger completion of drain tanks throughout the summer and fall of 2014. „Because the tanks are so large, the ITER Organization will install the tanks one at a time and do so before the neighboring building is constructed,” Chris Beatty, US ITER tokamak cooling water systems engineer, said. Beatty noted that the Hot Cell building will permanently block access to the drain tanks in the Tokamak Complex once the ITER facility is complete. The tanks, which are built to last 40 years, are expected to perform beyond the duration of the ITER project. The tokamak cooling water system includes over 20 miles of piping in an intricate network that wraps around the ITER Tokamak. The primary cooling water system is responsible for transferring heat from Tokamak hardware to the secondary cooling Czytaj dalej...

The dream of his life

ITER owes much to a few. At different moments in the history (and prehistory!) of the project, a handful of individuals made moves that were to prove decisive. Among this band of godfathers—whether scientists, politicians, diplomats or senior bureaucrats—Umberto Finzi stands prominently. Finzi, who retired from the European Commission in 2004 but continued to advise the Director General of Research until the conclusion of the ITER negotiations in 2006, belongs to the generation who embraced fusion research in the early 1960s at a time when plasma physics was still in its infancy. A physicist turned bureaucrat—he was called to Brussels to take care of setting up JET in 1978 and was appointed Head of the European Fusion Programme in 1996—Finzi played a key role in the negotiations that led to building ITER in Europe. An ITER godfather in his own right, he nevertheless insists on the „collective action” that, under four successive European presidencies, led to this decision. Time has passed. The „paper project” whose roots go back to the late 1970s, years before the seminal 1985 Reagan-Gorbatchev summit  in Geneva, is now a reality, as tangible as it is spectacular. When he toured the ITER worksite on 30 July, Umberto Finzi took the full measure of the progress accomplished since his last visit in 2006, when all there was to see was a hilly, wooded landscape and a high pole marking the future location of the Tokamak. „During most of my professional life,” he said, „ITER was a dream. You can imagine my emotion seeing these tons of steel and concrete. This reminds me of the famous message by Hergé¹ to Neil Armstrong: „By believing in his dreams, man turns them into reality.”  „ITER is a difficult venture,” he added, „and Czytaj dalej...

Korean contract advances neutral beam ports

The Korean Domestic Agency signed an important contract in July for the fabrication of neutral beam port in-wall shielding with Korean supplier Hyundai Heavy Industries Co., LTD (HHI). Through this contract, installation of the in-wall shielding into the port stub extensions will begin in mid-2015 with fabrication completed by early 2016. Hyundai Heavy Industries is also manufacturing two sectors of ITER vacuum vessel as contractor to the Korean Domestic Agency, as well as seventeen equatorial ports and the nine lower ports The vacuum vessel’s neutral beam ports are composed of a connecting duct, port extension, and port stub extension. The spaces between the inner and outer shells of the port extension and port stub extension are filled with preassembled blocks called in-wall shielding. The main purpose of in-wall shielding is to provide neutron shielding for the superconducting magnets, the thermal shield and the cryostat. In order to provide effective neutron shielding capability with the cooling water, 40-millimetre-thick flat plates (steel type 304B4) are used in almost all areas of the volume between port shells. In-wall shielding is composed of shield plates, upper/lower brackets and bolt/nut/washers. Pre-assembled 368 in-wall shielding blocks will be assembled into the neutral beam port extension and port stub extension during port fabrication, while 160 field joint in-wall shielding blocks will be assembled after field joint welding on the ITER site. The total net weight of all neutral beam in-wall shielding approximates 100 tons. Ki-jung Jung, Director-General of the Korean Domestic Agency, commented during the signature: „ITER Korea takes very seriously the demands of the vacuum vessel schedule and quality requirements by ITER.” Czytaj dalej...

ITER featured on BBC Evening News

On Wednesday  7 August, BBC world ran a feature on ITER in their evening news program. Science Presenter David Shukman and his team had spent two full days on the ITER site investigating about "the world’s most ambitious attempt to harness fusion as a source of power"…See the video to hear his conclusions. Czytaj dalej...

ITER features on BBC evening news

On Wednesday this week, 7 August, BBC world ran a feature on ITER in their evening news program. Science Presenter David Shukman and his team had spent two full days on the ITER site investigating about "the world’s most ambitious attempt to harness fusion as a source of power"…See the video to hear his conclusions. Czytaj dalej...

ITER features on BBC evening news

On Wednesday this week, 7 August, BBC world ran a feature on ITER in their evening news program. Science Presenter David Shukman and his team had spent two full days on the ITER site investigating about "the world’s most ambitious attempt to harness fusion as a source of power"…See the video to hear his conclusions. Czytaj dalej...

ITER features on BBC evening news

On Wednesday this week, 7 August, BBC world ran a feature on ITER in their evening news program. Science Presenter David Shukman and his team had spent two full days on the ITER site investigating about "the world’s most ambitious attempt to harness fusion as a source of power"…See the video to hear his conclusions. Czytaj dalej...

ITER features on BBC evening news

On Wednesday this week, 7 August, BBC world ran a feature on ITER in their evening news program. Science Presenter David Shukman and his team had spent two full days on the ITER site investigating about "the world’s most ambitious attempt to harness fusion as a source of power"…See the video to hear his conclusions. Czytaj dalej...